

SAND2020-9051 TR (slides) SAND2020-9046 TR (videos)

DIC 101

Elizabeth Jones and Amanda Jones Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Welcome to DIC 101!

Course Instructors

Special thanks to Dave
Johnson for video editing

Elizabeth Jones Sandia National Laboratories

Course Description

- Follows the Good Practices Guide for DIC (GPG)
- Developed by the International Digital Image Correlation Society (iDICs)
- Focuses on practical applications of DIC rather than theory or algorithms

Target Audience

iDICs

- New practitioners, to supplement vendor-based or other formal training
- Experienced users, to refresh their fundamental knowledge, assist in troubleshooting, and align practices with larger DIC community

Outline

- Basic, high-level DIC concepts
- Description of the GPG
- Design of DIC measurements
- Preparation for DIC measurements
- Camera calibration
- DIC processing techniques
- Strain calculations
- DIC reporting requirements

Download the GPG!

Before watching these videos, please download the *Good Practices Guide for DIC*, so you can follow along.

https://doi.org/10.32720/IDICS/GPG.ED1

Chapter 1: Introduction to DIC and the Good Practices Guide

- Keep the dots in the box
- 2D vs. Stereo DIC: main concepts
- Good Practices Guide

iDICs

Figure A.1: Flow chart illustrating the main steps involved when conducting DIC measurements in conjunction with mechanical testing of a planar test piece (part 1).

Figure A.2: Flow chart illustrating the main steps involved when conducting DIC measurements in conjunction with mechanical testing of a planar test piece (part 2).

(Th

-500

Chapter 2: Design of DIC Measurements

- Sec. 2.1: Measurement Requirements
- ► QOI, ROI, FOV
- 2D vs Stereo DIC
 - 2D DIC errors
- Stereo angle selection
- Position envelop for hardware
- Spatial gradients
- Noise floor
- Frame rate
- Exposure time
- Synchronization and triggering

¥ kz

- Setup overview
- ▶ QOI, ROI, FOV
- Stereo angle
- Focusing

time

Chapter 2: Design of DIC Measurements

Sec. 2.2: Equipment and Hardware

- Lens selection
- Focal length, stand-off distance, field-of-view
- Prime vs zoom lens
- Camera selection
- Mounting system
- Recommended camera orientations
 - Sensor orientation
- Rig orientation
- Aperture
- Lighting, exposure, gain, & contrast
- Cross polarized and diffuse light
- Heat waves

Demo 02

- Lens selection
- Focal length, stand-off distance, field-of-view
- Prime vs zoom lens

Demo 03

- Mounting system
- Camera orientation
- Demo 04

iDICs

- Aperture, lighting, exposure, gain, & contrast
- Cross-polarized light

Long Axis of Camera Sensor

Randomly polarized light = strong glare

Cross-polarized light eliminates glare

Direction of

Chapter 2: Design of DIC Measurements

Sec. 2.3: DIC Pattern

- Natural vs applied
- Size
- Variation
- Density
- Quality
- Reflections
- Compliance
- Bonding
- Fidelity
- Thickness
- Methods

iDICs

Appropriate size

Too small – aliased

Oriented, regular

Appropriate density

Sparse pattern

Specular reflection on each speckle

Matte pattern

ħ

Chapter 3: Preparation for the Measurements

- Sec. 3.1: Pre-Calibration Routine
 - Test procedure
 - Cleanliness of equipment
 - Camera warm-up
 - Synchronization
 - Review of system

Demo 05

- Cleanliness of equipment
- Demo 06: Review system
 - Position test piece and cameras
 - Verify FOV, focus, DOF, magnification/SOD
 - Adjust polarization filters.
 - Lock adjustable components
 - Review images, looking for
 - Glare
 - DIC pattern that is too coarse/fine
 - Defects in applied pattern
 - Out-of-focus regions
 - Poor contrast
 - Non-uniform lighting
 - Dirt or foreign object on lens
 - Vibrations

iDICs

Chapter 3: Preparation for the Measurements

Chapter 4: Execution of the Test

- Review all data acquisition systems
- Execute the test

Chapter 5: Processing of DIC Images

- Sec. 5.1-5.2: DIC software and user-defined settings
- https://idics.org/resources/
- https://sem.org/dic-challenge/
- Reference image
- Image pre-filtering
- Matching criterion
- Subset shape function
- Interpolation
- Subset size
- Step size

iDICs

Thresholds

y-location (px)

x-location (px)

DIC Challenge Sample 6

Chapter 5: Processing of DIC Images

- Sec. 5.3: Strain Calculations + Sec. 5.4: Uncertainty Quantification
- Coordinate system
- VSG size
- Variance vs Bias errors
- VSG study
- 1. Select subset & step size
- 2. Select noise image and highgradient image
- 3. Analyze with different settings
- 4. Extract a line cut
- 5. Assess convergence
- 6. Quantify noise
- 7. Balance variance and bias

iDICs

Table 1. DIC Hardware Parameters			
Camera	<manufacturer and="" model=""></manufacturer>		
Image Resolution	2448 x 2048 pixels ²		
Lens	<manufacturer and="" focal="" length="" mode,=""></manufacturer>		
Aperture	f/8		
Field-of-View	100 mm		
Image Scale	24.5 pixels/mm		
Stereo-Angle	25 degrees		
Stand-off Distance	240 mm		
Image Acquistion Rate	15 Hz		
Patterning Technique*	Base coat of white sp		Table 2. DIC Analysis Parameters
Pattern Feature Size (approximate)	5 pixels / 0.2 mm	DIC Software	<manufacturer, number="" version=""></manufacturer,>
*A more complete description of the patterning technique ma		Image Filtering	Gaussian filter with a 3x3 pixel kernel
		Subset Size	21 pixels / 0.86 mm
		Step Size	7 pixels / 0.29 mm
		Subset Shape Function	Affine
		Matching Criterion	Zero-normalized sum of square differences (ZNSSD)
		Interpolant	Bi-cubic spline
		Strain Window	15 data points
		Virtual Strain Gauge Size*	119 pixels / 4.9 mm
		Strain Formulation	Green-Lagrange
		Post-Filtering of Strains**	Median temporal filter, span of 5 data points / 0.33 seconds
		Displacement Noise-Floor***	0.01 pixels / 0.4 μm (in-plane); 0.03 pixels / 1.2 μm (out-of-plane)
		Strain Noise-Floor***	250 μm/m

*The VSG size is computed from Eqn. 7.2 in the DIC Good Practices Guide [1]. Other estimations of the VSG size may be more appropriate, depending on the strain calculation method used in the DIC software.

**A more complete description of any pre- or post-filtering may be appropriate in the main text.

***A brief description of how the noise-floor was computed should be included in the main text.

12